Pile Integrity Testing

Transient Dynamic Response (TDR) test is a rapid method of assessing the integrity of both pre-cast and cast in situ concrete piles. ...


Transient Dynamic Response (TDR) test is a rapid method of assessing the integrity of both pre-cast and cast in situ concrete piles. It is a natural evolution of the Steady State Vibration test first developed and applied to foundation testing by J Paquet in 1966. At that time a heavy (25Kg) vibrator was used to excite the pile at a range of frequencies. Since that time there have been dramatic improvements and miniaturization of the equipment, the most significant single step coming in 1982 when it was found that identical results could be obtained using a transient impulse on the pile top, using a small hand held hammer acting through a load cell in place of the heavy vibrator. Advances in micro processing meant that the time domain signal could be readily converted to frequency using the Fast Fourier Transform. This technique is now known as the Transient Dynamic Response and testing now only takes about 30 seconds per pile compared to about 15 minutes in 1965. It is now considered by many engineers to be the most appropriate test method for checking bored cast foundations.




Equipment used is lightweight and portable and is very rapid in operation. Analysis of results can be carried out instantly on site to confirm the length of the foundation and depth of any defects if they exist. The TDR system also has a powerful software analysis program, to enable more detailed analysis of changes in pile section and the influence of soil. It can also be used to predict the expected test result before even visiting site! The required preparation is minimal and in normal conditions up to 60 piles per day can easily be tested, increasing to 200 where access is very good.

Geophone sensor

The method is based on measuring the frequency and amplitude response of a pile known as impulse. This response, known as Mechanical Admittance (or mobility), contains all the information necessary to check pile integrity and to analyse soil influences. At higher frequencies the resonating harmonics of the pile are detected, whereas at low frequency the response is generally linear allowing measurement of pile-head
stiffness.

What will it tell you ?

The TDR method of assessing piles is able to analyse acoustic anomalies corresponding to the following :
  • Pile Toe Level
  • Shaft restraints
  • Over break
  • Cracks
  • Reductions in section
  • Zones of poor quality concrete

For further information on the advantages and limitation of this technique and other low strain methods of assessing piled foundation, we recommend reading CIRIA report 144 titled ‘Integrity testing in piling practice’ published in 1997.

How does it work ?

After ensuring that the concrete in the pile head is visually free of loose material and contaminants, a geophone sensor is placed in contact with the pile head, which is struck axially using the force response hammer. The response of both transducers is measured simultaneously, and these signals, velocity and force, are digitally processed and displayed on the test unit.


When a pile top is struck with the hammer a longitudinal wave travels down the shaft – it can be likened to a snake swallowing an egg. When the wave reaches the base of the pile it is reflected back up to the top. By assuming a wave speed velocity it is possible to calculate the pile length. Reflections can also be obtained from acoustic anomalies within the pile shaft. At low frequency the response is generally linear allowing measurement of the dynamic pile head stiffness.

Length Measurement

Length measurements are calculated from the distance between resonating peaks, produced by the pile toe or acoustic anomalies along the shaft. Lateral soil restraints, overbreak, changes in shaft section, cracks and zones of poor quality concrete can all produce various types of acoustic anomaly which can be detected.
Length, L = C/2df
Where:
C = velocity of longitudinal waves in concrete
df = distance between two resonating peaks

Dynamic Pile Head Stiffness

The dynamic pile head stiffness is measured at low frequencies, when the pile head and surrounding soil are moving as one unit and is the reciprocal of the slope of the initial part of the curve.
Stiffness, E’ = 2 pi fm/(V/fm)
Where:
Fm = frequency at point of measurement
V = Velocity

Typical mobility response

Mobility (inverse of impedance)

Concrete density or conversely the cross-sectional area of the pile (if concrete strength is known) can be calculated from the mean Mobility (N) of the resonating part of the curve using the following formula.
Mobility, N = 1 / pCA
Where:
p = concrete density
C = velocity of longitudinal waves in concrete
A = pile cross sectional area

Pile Head Preparation

In order the obtain the very best data possible when testing a pile, it is essential that the pile head is prepared properly prior to testing. Without good data any interpretation carried out will be meaningless. It is essential that the measurement transducers are mounted in the correct position and on sound concrete. The essentials of pile head preparation for integrity testing are given below :
a) Piles should if possible be tested at the cut-off level and trimmed to sound concrete. Any weak, broken concrete that sounds hollow should be removed and the pile top left roughly horizontal over the complete cross section.
b) Reinforcing bars should be bent slightly away if practicable and the helical removed to allow for a good swing of the test hammer.
c) Two areas should be prepared for the transducers, one for the hammer in the centre of the pile and the other for the geophone close to the pile perimeter. The areas should be approximately 100 mm in diameter and prepared as flat and level as possible using a scabbler, scutch hammer or a hammer and chisel, then brushed free of debris with a wire brush. If at first you are unable to obtain a valid result, it is always advisable to re-prepare the pile and carry out a re-test, as cracking in the pile head is not always apparent but can affect the test result significantly.

Simulation of test results

The Simulation software is a finite element programme that simulates the frequency response of a real concrete pile by defining it and the surrounding soil in up to 10 segments. For each segment, the following information can be input: length, diameter, concrete wave propagation velocity, concrete density, soil shear wave velocity, soil density and base soil details. With the TPAP simulation it is possible to super impose the simulated result onto a real frequency response curve. Soil and Concrete parameters can be changed using sliders and the simulation alters instantaneously in response. Simulation of Pile Shaft Over break

Simulation of Pile Shaft Overbreak

The operator is able to carry out curve matching to simulate the probable cause of any anomalies. Simulations are generally carried out on pile test results that have shown an intermediate response and enables a high degree of confidence in the interpretation. Impedance Profiling The impedance profile method of analysing pile integrity results combines the mobility curve obtained at the top of the pile and details of soils surrounding the pile to produce a specific reflectogram of the pile shaft, and a profile of the variation of local characteristic impedance, as a function of depth. The local impedance is well related to the mechanical properties of the concrete crosssection. To create an impedance profile, the nominal pile concrete properties and dimensions are input, together with the known soil conditions. The resulting impedance profile enables the operator to check for reductions in pile impedance, which could be caused by bands of poor quality concrete, of necking and increases in pile impedance, probably caused by increases in pile section, or overbreak. Tdr Test Accuracy Error calculations for TDR test responses are highly complex, due to the many factors involved. The accuracy of response curves is influenced by equipment accuracy and operator accuracy. As a guide, the accuracy of mobility and frequency measurements are shown in the table below for a standard test with black hammer tip to 1000Hz: Background vibration on site can also influence the accuracy of results. This is however usually apparent to the site operator, who can take the necessary action to remove the source. Pile head preparation is the single most important factor which influences test results. A poorly prepared pile will not inhibit the accuracy of the result – it will not, however, properly represent the body of the pile.

Impedance profile of shaft necking

Tdr Test Accuracy

Error calculations for TDR test responses are highly complex, due to the many factors involved. The accuracy of response curves is influenced by equipment accuracy and operator accuracy. As a guide, the accuracy of mobility and frequency measurements are shown in the table below for a standard test with black hammer tip to 1000Hz:

Background vibration on site can also influence the accuracy of results. This is however usually apparent to the site operator, who can take the necessary action to remove the source.

Pile head preparation is the single most important factor which influences test results. A poorly prepared pile will not inhibit the accuracy of the result – it will not, however, properly represent the body of the pile.






Name

• compression couplers,1,• tension couplers,1,1997 UBC,1,56 days Concrete test,1,ADDICRETE,1,additives,1,administer computer networks,1,admixtures,1,Advises Subcontractors,1,alignment of the shafts,1,Allowable Stress Design,1,Anchor Bolts,1,Annual depreciation expense,1,approval of drawings,1,ASCE7,1,ASD,1,Assist in Quantity,1,Assist the Project Manager,1,Authority to Delegate,1,AutoCAD,2,AutoCAD to Etabs,1,bagger,1,bars,1,bars in a bundle,1,BASE ISOLATED DAMAGE,1,base plates,1,basement wall,1,Basic soil properties,1,basic wind speed,1,Beams Inspection Checklist,1,Bearing capacity,1,bell pile bottom,1,bent bars,1,Bitomeneous,1,Blockwork,1,Bowels,1,breaching spillway,1,BS 8007:1987,1,BS5400,1,BS6399,1,BS8007,1,BS8110-1997,1,building materials,1,buildings height,1,CALCULATION OF CRACK WIDTH,1,Canary Island Dates,1,cantilever footing,1,Carbon Equivalent,1,carbon test,1,cast in-situ,1,cast-in-place anchors,1,cast-in-place concrete pile,1,Cause-and-effect diagram,1,Chairs,1,Check sheets,1,Chemical Admixtures,1,Chute spillway,1,CIRIA,2,CIRIA Report 136,1,civil engineering,1,civil structures,1,Coal ash,1,collars,1,Collision Load,1,columns,3,columns and walls,1,Combination of combinations,1,combinations in Etabs,1,Company's Health,1,Compliant Towers platforms,1,compression test,1,compressive strength,1,concrete,4,concrete block buildings,1,CONCRETE IN HOT WEATHER,1,CONCRETE MOMENT FRAME,1,concrete pile,1,Concrete Rebound Hammer,1,Concrete Shrinkage,1,Concrete Slump Test,1,concrete walls,1,Construction and Stressing,1,Construction companies in Dubai,1,construction drawings,1,construction industry,1,Construction joints,1,Construction Manual,1,continuous external restraint,1,continuous slabs,1,contract planresponsibilities of QA/QC,1,Contracts Manager,1,cooling pipe system,1,Corner reinforcement,1,Cost Plus Award Fee,1,Cost-reimbursable,1,COUPLED SHEAR WALL,1,Couplers,1,couplers in columns,1,CP3,1,CRACK WIDTH,1,Creep,1,CURING,1,day to day work progress,1,Dead load and Self-weight,1,Deck,1,Deflection,1,Deflection discussion,1,Deflection in Prestressed,1,deformed bars,1,Demolition,1,design drawings,1,Design Requirements,1,designing a tall building,1,Designs projects,1,detailed review,1,detailing and implementation,1,Development length,1,different codes in one structure,1,Differential elastic shortening,1,dimensions,1,DIRECT TENSION,1,Draftsman responsibilities,1,drawings and specifications,1,Drift Limitations,1,Drop beams,1,dust loads,1,dust on roof,1,Dynamic Pile Head,1,dynamic wind pressure,1,Early age Crackwidth,1,early strength cement,1,Earth pressure,1,Earthquake Design,1,earthquakes,1,EBT adhesive sealant,1,Elastic Shortening,1,electrical and manual,1,elevator requirement,1,Elevators,1,Encasement of pipes,1,end plate connection,1,Energy dissipater,1,engineering design,1,Environmental procedures,1,epoxy compound,1,Epoxy grout,1,equipment performance records,1,Error and warning free model,1,Errors in Etabs,1,establishment of construction,1,Estimating Flow Standard,1,Etabs,2,Etabs Design,1,ETABS to ROBOT,1,excavation,1,Excavation slopes,1,external concrete surfaces,1,Finishing of slip-forms,1,Fire,1,Firm Fixed Price,1,Fixed platforms,1,Fixed Price Incentive Fee,1,Fixed Price with Economic,1,Flexible Joints,1,Flexible pipes,1,floors,1,Flow charts,1,Fly ash,1,Foundation analysis,2,Foundations,2,framed openings,1,Free over fall spillway,1,FRP,1,FRP advantages,1,FRP disadvantages,1,FRP technology,1,full length bar,1,General Notes,1,Geophone sensor,1,Hammer Schmidt Type,1,HDP,1,Health and Safety procedures,1,helical piering,1,helical piles,1,High Early Strength Portland Cement,1,High quality additives,1,high rise / tower,1,highly effective,1,Histograms,1,hooked bars,1,Horizontal steel,1,Human Comfort,1,hydraulic,1,hydraulic jump,1,Hydraulic resistance,1,Hydro technical tunnels,1,IBC/ASCE,1,immediate reaction,1,importance of Plasticizers,1,Importing,1,IMS,1,Inspection Checklist,6,INSTRUMENT CALIBRATION,1,inter-story drift,1,interest payments,1,IT engineer responsibilities,1,Jack-up Platforms,1,Jacking Systems,1,Japanese code for escalators,1,Kicker,1,largest man-made machine,1,largest man-made machine on earth,1,largest oil platform,1,lateral forces,1,lateral loads,1,LFD,1,lifting hooks,1,Load Factor Design,1,load resisting elements,1,load-bearing wall,1,Loading,1,Loads and Resistances,1,LRFD,1,Maintain contract database,1,Maintains close scrutiny,1,maintenance cost,1,Makes recommendations,1,manage,1,manufacturer,1,manufacturing process,1,Maximum allowable slopes,1,maximum deflection,1,maximum difference,1,maximum pressure,1,maximum reinforcement,1,maximum temperature,1,Mechanical couplers,1,Mechanical damage,1,membrane floors,1,Metal sleeves swaged,1,Method of dissipation,1,METHOD OF TESTING,1,Method statement,2,Mineral Admixtures,1,minimize the seepage,1,minimizing the cost,1,minimum eccentricity moment,1,Minimum reinforcement,1,mixing concrete,1,modelling in Etabs,1,Monitors performance,1,monthly invoice,1,Monthly Safety Report,1,Most Useless Megaprojects in the World,1,multi-storey buildings,1,multistory buildings,1,Natural frequency,1,Necessity of tunnel lining,1,new structural systems,1,O&M,1,of concrete block buildings,1,office buildings,1,Office Tall Buildings,1,offshore platforms,1,oil platform,1,oil rigs,1,on beams from loaded slab can be achieved by defining the slab as a membrane,1,opening reinforcement,1,ordinary Portland cement,2,Other bars,1,Overlap,1,overlap locations,1,Oversee and review,1,palm trees weight,1,parallel threads,1,parapet,1,Perform data backups,1,Performance Bonds,1,Performs design drafting,1,physical properties,1,pile cap,1,Pile Dynamic Test,1,Pile Head Preparation,1,Pile Integrity Testing,1,Pile Shaft Overbreak,1,piles foundations,1,Pindos,1,Pipe Classifications,1,PLACING,1,Placing boom,1,Plan and prioritize work,1,Planning Engineer,1,plant and equipment,1,Plant and Equipment Engineer,1,plaster walls,1,Platform types,1,pneumatic,1,Post-Tensioning Grouting,1,Pour strip,1,precast panel,1,Prepares monthly report,1,Pressure Ratings,1,Prestressed Concrete,1,prevent uplift,1,principal load resisting,1,procedure of fixing,1,Project Coordinator,1,Project manager assignment,1,project schedule,1,project's compliance,1,Provides technical expertise,1,provisional Sum,2,PT slabs,2,pump,1,PVC,1,QA,1,QA/QC Engineer,1,QC,1,Quality,1,quotes,1,Quotes of Engineers,1,raft foundations,1,Raft Slab Inspection Checklist,1,reaction as an engineer,1,rebound hammer,1,recommended tests,1,Recorded experience,1,Reinforced concrete columns,1,reinforcement,1,Reinforcement at openings,1,reinforcing bars,2,reinforcing-steel,1,Residential Tall Buildings,1,RESISTING SYSTEMS DAMAGE,1,Retaining Wall Inspection Checklist,1,Retaining walls,1,retarder,1,Review contract documents,1,review contracts,1,review expiring contracts,1,Reviews accidents,1,reviews contract drafts,1,Reviews shop drawings,1,Reviews the terms and conditions,1,Rice husk ash,1,rigid foundation,1,Rigid pipes,1,Road layers,1,Robot Millennium,1,Rock Strata and Excavation,1,Roles and Responsibilities,8,Roller bucket,1,Rough Order of Magnitude,1,Rules of thumb,1,saddle beams,1,Safe 14,1,Safety Manager,1,sample letter,3,sand,1,SAP2000,1,Schmidt Hammer,1,Seismic,1,Seismic Design Principle,1,Seismic force,1,SEISMIC RESISTING SYSTEMS,1,seismic zone factor,1,Semi-structural welding,1,Semi-submersible Platforms,1,Senior Architect,1,Senior Contracts Engineer,1,Sequential Loading,1,Set work program,1,Seven Basic Quality Tools,1,shallow foundation,1,Shell,1,Ship-board Rigs platforms,1,shop drawings,1,shortening of columns,1,Shrinkage,1,Shrinkage and Temperature,1,Side channel spillway,1,simply supported,1,Site engineer responsibilities,1,site facilities,1,Site Investigation,1,SK Gosh,1,Ski-jump,1,slab assignment,1,slabs,2,Slabs Inspection Checklist,1,slings,1,slip forms,1,Slip-form,1,Slip-form construction,1,slip-forming,1,smooth finish,1,soffit slabs,1,Soil classification,1,Soil Sloping Systems,1,Soil Testing,1,speed of erection,1,Spring Force,1,standard size bolts,1,Static load,1,Static load multiplier,1,steel beam,1,Steel Columns,1,steel quantity,1,steel stress,1,Stiffness,1,stiffness and resistance,1,stilling basin,1,Strap footing,1,Strength and Stability,1,Stress on soil in etabs,1,Stressing sequence,1,Striking formworks,2,Strip footing,1,Strong Column,1,structural construction process,1,structural design spreadsheet,1,Structural Details,1,structural engineers,1,Structural Provisions,1,structural purposes pipes,1,strukts spreadsheets,1,Subcontract Agreement,1,Super-plasticizers,2,surfactants,1,Tack welding,1,Tall Building,1,tall buildings,1,taper-cut threads,1,Tdr Test Accuracy,1,Technical Engineer,1,technical submittals,1,test hammer,1,Test on Piles,1,Test specimens,1,TESTING,1,Thermal Expansion,1,threaded rods with nuts,1,time for completion,1,Top bars,1,torsion-load test,1,Total Shortening,1,tower cranes,1,Tower cranes installation,1,Transform AUTOCAD drawings,1,trough spillway,1,Trump Tower,1,Tunnel,1,tunnel lining,1,type of concrete,1,Types of contracts,1,types of foundation,1,Types of shallow foundation,1,Types of spillways,1,Types of waterproofing,1,Ultra Ever Dry,1,Uniform loads Safe 14,1,uniform thickness,1,Uplift Force,1,uplift test lateral-load test,1,vertical load resisting,1,Voided Biaxial Slabs,1,wall openings,1,walls,2,Warning,1,Water curing,1,Weak Beam Concept,1,Wedge locking sleeves,1,weekly and monthly program,1,weekly and monthly report,1,Welding of reinforcement,1,Welding procedures,1,What teachers never taught us,1,wind and seismic,1,Wind loads,1,Wind simulation,1,WOOD SHEAR WALL,1,workability,2,workshop drawings,1,Workshop repair,1,
ltr
item
Strukts: Pile Integrity Testing
Pile Integrity Testing
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHHtQ-xiGt9vqvZDcVgzVw53YkIKq_Avy-w5NaZXkw61UaABAwzRAsLaD0AdlHrxhst1pdzktBXEwVVxgWk0ltnmolfjzjT_0KpklvvgbLM3IoiiZGTH1IJ02Cl7vHOAXWJrjS8IM_Gfk/s1600/c3569d38dcd50d106e705d51c28b86.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHHtQ-xiGt9vqvZDcVgzVw53YkIKq_Avy-w5NaZXkw61UaABAwzRAsLaD0AdlHrxhst1pdzktBXEwVVxgWk0ltnmolfjzjT_0KpklvvgbLM3IoiiZGTH1IJ02Cl7vHOAXWJrjS8IM_Gfk/s72-c/c3569d38dcd50d106e705d51c28b86.png
Strukts
https://www.strukts.com/2013/03/pile-integrity-testing_97.html
https://www.strukts.com/
https://www.strukts.com/
https://www.strukts.com/2013/03/pile-integrity-testing_97.html
true
7606260228666216043
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share to a social network STEP 2: Click the link on your social network Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy